TSTP Solution File: SET925^7 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SET925^7 : TPTP v6.1.0. Released v5.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n115.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:31:15 EDT 2014

% Result   : Theorem 0.48s
% Output   : Proof 0.48s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SET925^7 : TPTP v6.1.0. Released v5.5.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n115.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:14:31 CDT 2014
% % CPUTime  : 0.48 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL015^0.ax, trying next directory
% FOF formula (<kernel.Constant object at 0xac7bd8>, <kernel.Type object at 0xac7710>) of role type named mu_type
% Using role type
% Declaring mu:Type
% FOF formula (<kernel.Constant object at 0xac7680>, <kernel.DependentProduct object at 0xac7bd8>) of role type named qmltpeq_type
% Using role type
% Declaring qmltpeq:(mu->(mu->(fofType->Prop)))
% FOF formula (<kernel.Constant object at 0xac7320>, <kernel.DependentProduct object at 0xac7518>) of role type named meq_prop_type
% Using role type
% Declaring meq_prop:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) meq_prop) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W)))) of role definition named meq_prop
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) meq_prop) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W))))
% Defined: meq_prop:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W)))
% FOF formula (<kernel.Constant object at 0x7b2fc8>, <kernel.DependentProduct object at 0xac7440>) of role type named mnot_type
% Using role type
% Declaring mnot:((fofType->Prop)->(fofType->Prop))
% FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mnot) (fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False))) of role definition named mnot
% A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mnot) (fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False)))
% Defined: mnot:=(fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False))
% FOF formula (<kernel.Constant object at 0x7b2d40>, <kernel.DependentProduct object at 0xac7a70>) of role type named mor_type
% Using role type
% Declaring mor:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W)))) of role definition named mor
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W))))
% Defined: mor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W)))
% FOF formula (<kernel.Constant object at 0x8e4830>, <kernel.DependentProduct object at 0x8e4b00>) of role type named mbox_type
% Using role type
% Declaring mbox:((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mbox) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V))))) of role definition named mbox
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mbox) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V)))))
% Defined: mbox:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V))))
% FOF formula (<kernel.Constant object at 0x8e4440>, <kernel.DependentProduct object at 0xac7518>) of role type named mforall_prop_type
% Using role type
% Declaring mforall_prop:(((fofType->Prop)->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mforall_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W)))) of role definition named mforall_prop
% A new definition: (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mforall_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W))))
% Defined: mforall_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W)))
% FOF formula (<kernel.Constant object at 0x8e4440>, <kernel.DependentProduct object at 0xac7320>) of role type named mtrue_type
% Using role type
% Declaring mtrue:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) mtrue) (fun (W:fofType)=> True)) of role definition named mtrue
% A new definition: (((eq (fofType->Prop)) mtrue) (fun (W:fofType)=> True))
% Defined: mtrue:=(fun (W:fofType)=> True)
% FOF formula (<kernel.Constant object at 0x8e4440>, <kernel.DependentProduct object at 0xac79e0>) of role type named mfalse_type
% Using role type
% Declaring mfalse:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) mfalse) (mnot mtrue)) of role definition named mfalse
% A new definition: (((eq (fofType->Prop)) mfalse) (mnot mtrue))
% Defined: mfalse:=(mnot mtrue)
% FOF formula (<kernel.Constant object at 0xac7518>, <kernel.DependentProduct object at 0xac7320>) of role type named mand_type
% Using role type
% Declaring mand:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mand) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi))))) of role definition named mand
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mand) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi)))))
% Defined: mand:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi))))
% FOF formula (<kernel.Constant object at 0xac7320>, <kernel.DependentProduct object at 0xac72d8>) of role type named mimplies_type
% Using role type
% Declaring mimplies:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplies) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi))) of role definition named mimplies
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplies) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi)))
% Defined: mimplies:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi))
% FOF formula (<kernel.Constant object at 0xac72d8>, <kernel.DependentProduct object at 0xac7ab8>) of role type named mimplied_type
% Using role type
% Declaring mimplied:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplied) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi))) of role definition named mimplied
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplied) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi)))
% Defined: mimplied:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi))
% FOF formula (<kernel.Constant object at 0xac7488>, <kernel.DependentProduct object at 0xaa74d0>) of role type named mequiv_type
% Using role type
% Declaring mequiv:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mequiv) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi)))) of role definition named mequiv
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mequiv) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi))))
% Defined: mequiv:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi)))
% FOF formula (<kernel.Constant object at 0xac7488>, <kernel.DependentProduct object at 0xaa74d0>) of role type named mxor_type
% Using role type
% Declaring mxor:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mxor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi)))) of role definition named mxor
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mxor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi))))
% Defined: mxor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi)))
% FOF formula (<kernel.Constant object at 0xac7488>, <kernel.DependentProduct object at 0xaa7320>) of role type named mdia_type
% Using role type
% Declaring mdia:((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mdia) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi))))) of role definition named mdia
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mdia) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi)))))
% Defined: mdia:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi))))
% FOF formula (<kernel.Constant object at 0xaa7248>, <kernel.DependentProduct object at 0x8c9710>) of role type named exists_in_world_type
% Using role type
% Declaring exists_in_world:(mu->(fofType->Prop))
% FOF formula (forall (V:fofType), ((ex mu) (fun (X:mu)=> ((exists_in_world X) V)))) of role axiom named nonempty_ax
% A new axiom: (forall (V:fofType), ((ex mu) (fun (X:mu)=> ((exists_in_world X) V))))
% FOF formula (<kernel.Constant object at 0xaa71b8>, <kernel.DependentProduct object at 0x8c95f0>) of role type named mforall_ind_type
% Using role type
% Declaring mforall_ind:((mu->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mforall_ind) (fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), (((exists_in_world X) W)->((Phi X) W))))) of role definition named mforall_ind
% A new definition: (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mforall_ind) (fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), (((exists_in_world X) W)->((Phi X) W)))))
% Defined: mforall_ind:=(fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), (((exists_in_world X) W)->((Phi X) W))))
% FOF formula (<kernel.Constant object at 0x8c9950>, <kernel.DependentProduct object at 0x8c9488>) of role type named mexists_ind_type
% Using role type
% Declaring mexists_ind:((mu->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mexists_ind) (fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X))))))) of role definition named mexists_ind
% A new definition: (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mexists_ind) (fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X)))))))
% Defined: mexists_ind:=(fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X))))))
% FOF formula (<kernel.Constant object at 0x8c9488>, <kernel.DependentProduct object at 0x8c96c8>) of role type named mexists_prop_type
% Using role type
% Declaring mexists_prop:(((fofType->Prop)->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mexists_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P))))))) of role definition named mexists_prop
% A new definition: (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mexists_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P)))))))
% Defined: mexists_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P))))))
% FOF formula (<kernel.Constant object at 0x8c95f0>, <kernel.DependentProduct object at 0x8c9c68>) of role type named mreflexive_type
% Using role type
% Declaring mreflexive:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mreflexive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S)))) of role definition named mreflexive
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mreflexive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S))))
% Defined: mreflexive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S)))
% FOF formula (<kernel.Constant object at 0x8c9c68>, <kernel.DependentProduct object at 0x8c9bd8>) of role type named msymmetric_type
% Using role type
% Declaring msymmetric:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) msymmetric) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S))))) of role definition named msymmetric
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) msymmetric) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S)))))
% Defined: msymmetric:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S))))
% FOF formula (<kernel.Constant object at 0x8c9bd8>, <kernel.DependentProduct object at 0x8c9cb0>) of role type named mserial_type
% Using role type
% Declaring mserial:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mserial) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T)))))) of role definition named mserial
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mserial) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T))))))
% Defined: mserial:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T)))))
% FOF formula (<kernel.Constant object at 0x8c9cb0>, <kernel.DependentProduct object at 0x8c9878>) of role type named mtransitive_type
% Using role type
% Declaring mtransitive:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mtransitive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U))))) of role definition named mtransitive
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mtransitive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U)))))
% Defined: mtransitive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U))))
% FOF formula (<kernel.Constant object at 0x8c9878>, <kernel.DependentProduct object at 0x8c94d0>) of role type named meuclidean_type
% Using role type
% Declaring meuclidean:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) meuclidean) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U))))) of role definition named meuclidean
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) meuclidean) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U)))))
% Defined: meuclidean:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U))))
% FOF formula (<kernel.Constant object at 0x8c94d0>, <kernel.DependentProduct object at 0x8c9e60>) of role type named mpartially_functional_type
% Using role type
% Declaring mpartially_functional:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mpartially_functional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U))))) of role definition named mpartially_functional
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mpartially_functional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U)))))
% Defined: mpartially_functional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U))))
% FOF formula (<kernel.Constant object at 0x8c9e60>, <kernel.DependentProduct object at 0x8c97a0>) of role type named mfunctional_type
% Using role type
% Declaring mfunctional:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mfunctional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U))))))))) of role definition named mfunctional
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mfunctional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U)))))))))
% Defined: mfunctional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U))))))))
% FOF formula (<kernel.Constant object at 0x8c97a0>, <kernel.DependentProduct object at 0x8c95a8>) of role type named mweakly_dense_type
% Using role type
% Declaring mweakly_dense:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_dense) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T))))))))) of role definition named mweakly_dense
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_dense) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T)))))))))
% Defined: mweakly_dense:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T))))))))
% FOF formula (<kernel.Constant object at 0x8c95a8>, <kernel.DependentProduct object at 0x8c9c68>) of role type named mweakly_connected_type
% Using role type
% Declaring mweakly_connected:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_connected) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T)))))) of role definition named mweakly_connected
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_connected) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T))))))
% Defined: mweakly_connected:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T)))))
% FOF formula (<kernel.Constant object at 0x8c9c68>, <kernel.DependentProduct object at 0x8c9950>) of role type named mweakly_directed_type
% Using role type
% Declaring mweakly_directed:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_directed) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V)))))))) of role definition named mweakly_directed
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_directed) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V))))))))
% Defined: mweakly_directed:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V)))))))
% FOF formula (<kernel.Constant object at 0x8c9488>, <kernel.DependentProduct object at 0x8c9b90>) of role type named mvalid_type
% Using role type
% Declaring mvalid:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) mvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W)))) of role definition named mvalid
% A new definition: (((eq ((fofType->Prop)->Prop)) mvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W))))
% Defined: mvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W)))
% FOF formula (<kernel.Constant object at 0x8c9c68>, <kernel.DependentProduct object at 0xab4050>) of role type named msatisfiable_type
% Using role type
% Declaring msatisfiable:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) msatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W))))) of role definition named msatisfiable
% A new definition: (((eq ((fofType->Prop)->Prop)) msatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W)))))
% Defined: msatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W))))
% FOF formula (<kernel.Constant object at 0x8c94d0>, <kernel.DependentProduct object at 0xab4128>) of role type named mcountersatisfiable_type
% Using role type
% Declaring mcountersatisfiable:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) mcountersatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False))))) of role definition named mcountersatisfiable
% A new definition: (((eq ((fofType->Prop)->Prop)) mcountersatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False)))))
% Defined: mcountersatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False))))
% FOF formula (<kernel.Constant object at 0x8c9b90>, <kernel.DependentProduct object at 0xab42d8>) of role type named minvalid_type
% Using role type
% Declaring minvalid:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) minvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False)))) of role definition named minvalid
% A new definition: (((eq ((fofType->Prop)->Prop)) minvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False))))
% Defined: minvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False)))
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL013^5.ax, trying next directory
% FOF formula (<kernel.Constant object at 0x7b2fc8>, <kernel.DependentProduct object at 0x8e4320>) of role type named rel_s4_type
% Using role type
% Declaring rel_s4:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x7b2fc8>, <kernel.DependentProduct object at 0x8e4b00>) of role type named mbox_s4_type
% Using role type
% Declaring mbox_s4:((fofType->Prop)->(fofType->Prop))
% FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mbox_s4) (fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_s4 W) V)->False)) (Phi V))))) of role definition named mbox_s4
% A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mbox_s4) (fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_s4 W) V)->False)) (Phi V)))))
% Defined: mbox_s4:=(fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_s4 W) V)->False)) (Phi V))))
% FOF formula (<kernel.Constant object at 0x7b2d40>, <kernel.DependentProduct object at 0x8e47e8>) of role type named mdia_s4_type
% Using role type
% Declaring mdia_s4:((fofType->Prop)->(fofType->Prop))
% FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mdia_s4) (fun (Phi:(fofType->Prop))=> (mnot (mbox_s4 (mnot Phi))))) of role definition named mdia_s4
% A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mdia_s4) (fun (Phi:(fofType->Prop))=> (mnot (mbox_s4 (mnot Phi)))))
% Defined: mdia_s4:=(fun (Phi:(fofType->Prop))=> (mnot (mbox_s4 (mnot Phi))))
% FOF formula (mreflexive rel_s4) of role axiom named a1
% A new axiom: (mreflexive rel_s4)
% FOF formula (mtransitive rel_s4) of role axiom named a2
% A new axiom: (mtransitive rel_s4)
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL015^1.ax, trying next directory
% FOF formula (forall (X:mu) (V:fofType) (W:fofType), (((and ((exists_in_world X) V)) ((rel_s4 V) W))->((exists_in_world X) W))) of role axiom named cumulative_ax
% A new axiom: (forall (X:mu) (V:fofType) (W:fofType), (((and ((exists_in_world X) V)) ((rel_s4 V) W))->((exists_in_world X) W)))
% FOF formula (<kernel.Constant object at 0xd1e3f8>, <kernel.DependentProduct object at 0xac6320>) of role type named empty_type
% Using role type
% Declaring empty:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0xd1eb00>, <kernel.DependentProduct object at 0xac66c8>) of role type named in_type
% Using role type
% Declaring in:(mu->(mu->(fofType->Prop)))
% FOF formula (<kernel.Constant object at 0xd1e3f8>, <kernel.Constant object at 0xac6878>) of role type named empty_set_type
% Using role type
% Declaring empty_set:mu
% FOF formula (forall (V:fofType), ((exists_in_world empty_set) V)) of role axiom named existence_of_empty_set_ax
% A new axiom: (forall (V:fofType), ((exists_in_world empty_set) V))
% FOF formula (<kernel.Constant object at 0xd1e518>, <kernel.DependentProduct object at 0xac6320>) of role type named singleton_type
% Using role type
% Declaring singleton:(mu->mu)
% FOF formula (forall (V:fofType) (V1:mu), ((exists_in_world (singleton V1)) V)) of role axiom named existence_of_singleton_ax
% A new axiom: (forall (V:fofType) (V1:mu), ((exists_in_world (singleton V1)) V))
% FOF formula (<kernel.Constant object at 0xaa4d40>, <kernel.DependentProduct object at 0xac6908>) of role type named set_difference_type
% Using role type
% Declaring set_difference:(mu->(mu->mu))
% FOF formula (forall (V:fofType) (V2:mu) (V1:mu), ((exists_in_world ((set_difference V2) V1)) V)) of role axiom named existence_of_set_difference_ax
% A new axiom: (forall (V:fofType) (V2:mu) (V1:mu), ((exists_in_world ((set_difference V2) V1)) V))
% FOF formula (mvalid (mbox_s4 (mforall_ind (fun (X:mu)=> (mbox_s4 ((qmltpeq X) X)))))) of role axiom named reflexivity
% A new axiom: (mvalid (mbox_s4 (mforall_ind (fun (X:mu)=> (mbox_s4 ((qmltpeq X) X))))))
% FOF formula (mvalid (mbox_s4 (mforall_ind (fun (X:mu)=> (mbox_s4 (mforall_ind (fun (Y:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq X) Y))) (mbox_s4 ((qmltpeq Y) X))))))))))) of role axiom named symmetry
% A new axiom: (mvalid (mbox_s4 (mforall_ind (fun (X:mu)=> (mbox_s4 (mforall_ind (fun (Y:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq X) Y))) (mbox_s4 ((qmltpeq Y) X)))))))))))
% FOF formula (mvalid (mbox_s4 (mforall_ind (fun (X:mu)=> (mbox_s4 (mforall_ind (fun (Y:mu)=> (mbox_s4 (mforall_ind (fun (Z:mu)=> (mbox_s4 ((mimplies ((mand (mbox_s4 ((qmltpeq X) Y))) (mbox_s4 ((qmltpeq Y) Z)))) (mbox_s4 ((qmltpeq X) Z)))))))))))))) of role axiom named transitivity
% A new axiom: (mvalid (mbox_s4 (mforall_ind (fun (X:mu)=> (mbox_s4 (mforall_ind (fun (Y:mu)=> (mbox_s4 (mforall_ind (fun (Z:mu)=> (mbox_s4 ((mimplies ((mand (mbox_s4 ((qmltpeq X) Y))) (mbox_s4 ((qmltpeq Y) Z)))) (mbox_s4 ((qmltpeq X) Z))))))))))))))
% FOF formula (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 (mforall_ind (fun (C:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((qmltpeq ((set_difference A) C)) ((set_difference B) C))))))))))))))) of role axiom named set_difference_substitution_1
% A new axiom: (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 (mforall_ind (fun (C:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((qmltpeq ((set_difference A) C)) ((set_difference B) C)))))))))))))))
% FOF formula (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 (mforall_ind (fun (C:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((qmltpeq ((set_difference C) A)) ((set_difference C) B))))))))))))))) of role axiom named set_difference_substitution_2
% A new axiom: (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 (mforall_ind (fun (C:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((qmltpeq ((set_difference C) A)) ((set_difference C) B)))))))))))))))
% FOF formula (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((qmltpeq (singleton A)) (singleton B)))))))))))) of role axiom named singleton_substitution_1
% A new axiom: (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((qmltpeq (singleton A)) (singleton B))))))))))))
% FOF formula (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 ((mimplies ((mand (mbox_s4 ((qmltpeq A) B))) (mbox_s4 (empty A)))) (mbox_s4 (empty B))))))))))) of role axiom named empty_substitution_1
% A new axiom: (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 ((mimplies ((mand (mbox_s4 ((qmltpeq A) B))) (mbox_s4 (empty A)))) (mbox_s4 (empty B)))))))))))
% FOF formula (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 (mforall_ind (fun (C:mu)=> (mbox_s4 ((mimplies ((mand (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((in A) C)))) (mbox_s4 ((in B) C)))))))))))))) of role axiom named in_substitution_1
% A new axiom: (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 (mforall_ind (fun (C:mu)=> (mbox_s4 ((mimplies ((mand (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((in A) C)))) (mbox_s4 ((in B) C))))))))))))))
% FOF formula (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 (mforall_ind (fun (C:mu)=> (mbox_s4 ((mimplies ((mand (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((in C) A)))) (mbox_s4 ((in C) B)))))))))))))) of role axiom named in_substitution_2
% A new axiom: (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 (mforall_ind (fun (C:mu)=> (mbox_s4 ((mimplies ((mand (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((in C) A)))) (mbox_s4 ((in C) B))))))))))))))
% FOF formula (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((in A) B))) (mbox_s4 (mnot (mbox_s4 ((in B) A))))))))))))) of role axiom named antisymmetry_r2_hidden
% A new axiom: (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((in A) B))) (mbox_s4 (mnot (mbox_s4 ((in B) A)))))))))))))
% FOF formula (mvalid (mbox_s4 (empty empty_set))) of role axiom named fc1_xboole_0
% A new axiom: (mvalid (mbox_s4 (empty empty_set)))
% FOF formula (mvalid (mexists_ind (fun (A:mu)=> (mbox_s4 (empty A))))) of role axiom named rc1_xboole_0
% A new axiom: (mvalid (mexists_ind (fun (A:mu)=> (mbox_s4 (empty A)))))
% FOF formula (mvalid (mexists_ind (fun (A:mu)=> (mbox_s4 (mnot (mbox_s4 (empty A))))))) of role axiom named rc2_xboole_0
% A new axiom: (mvalid (mexists_ind (fun (A:mu)=> (mbox_s4 (mnot (mbox_s4 (empty A)))))))
% FOF formula (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> ((mand (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))) (mbox_s4 ((in A) B))))) (mbox_s4 ((mimplies (mbox_s4 ((in A) B))) (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set)))))))))))) of role axiom named l36_zfmisc_1
% A new axiom: (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> ((mand (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))) (mbox_s4 ((in A) B))))) (mbox_s4 ((mimplies (mbox_s4 ((in A) B))) (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))))))))))))
% FOF formula (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> ((mand (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))) (mbox_s4 ((in A) B))))) (mbox_s4 ((mimplies (mbox_s4 ((in A) B))) (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set)))))))))))) of role conjecture named t68_zfmisc_1
% Conjecture to prove = (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> ((mand (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))) (mbox_s4 ((in A) B))))) (mbox_s4 ((mimplies (mbox_s4 ((in A) B))) (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set)))))))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> ((mand (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))) (mbox_s4 ((in A) B))))) (mbox_s4 ((mimplies (mbox_s4 ((in A) B))) (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))))))))))))']
% Parameter mu:Type.
% Parameter fofType:Type.
% Parameter qmltpeq:(mu->(mu->(fofType->Prop))).
% Definition meq_prop:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mnot:=(fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False)):((fofType->Prop)->(fofType->Prop)).
% Definition mor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mbox:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V)))):((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop))).
% Definition mforall_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W))):(((fofType->Prop)->(fofType->Prop))->(fofType->Prop)).
% Definition mtrue:=(fun (W:fofType)=> True):(fofType->Prop).
% Definition mfalse:=(mnot mtrue):(fofType->Prop).
% Definition mand:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi)))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mimplies:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi)):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mimplied:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi)):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mequiv:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mxor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mdia:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi)))):((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop))).
% Parameter exists_in_world:(mu->(fofType->Prop)).
% Axiom nonempty_ax:(forall (V:fofType), ((ex mu) (fun (X:mu)=> ((exists_in_world X) V)))).
% Definition mforall_ind:=(fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), (((exists_in_world X) W)->((Phi X) W)))):((mu->(fofType->Prop))->(fofType->Prop)).
% Definition mexists_ind:=(fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X)))))):((mu->(fofType->Prop))->(fofType->Prop)).
% Definition mexists_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P)))))):(((fofType->Prop)->(fofType->Prop))->(fofType->Prop)).
% Definition mreflexive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S))):((fofType->(fofType->Prop))->Prop).
% Definition msymmetric:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S)))):((fofType->(fofType->Prop))->Prop).
% Definition mserial:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T))))):((fofType->(fofType->Prop))->Prop).
% Definition mtransitive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U)))):((fofType->(fofType->Prop))->Prop).
% Definition meuclidean:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U)))):((fofType->(fofType->Prop))->Prop).
% Definition mpartially_functional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U)))):((fofType->(fofType->Prop))->Prop).
% Definition mfunctional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U)))))))):((fofType->(fofType->Prop))->Prop).
% Definition mweakly_dense:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T)))))))):((fofType->(fofType->Prop))->Prop).
% Definition mweakly_connected:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T))))):((fofType->(fofType->Prop))->Prop).
% Definition mweakly_directed:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V))))))):((fofType->(fofType->Prop))->Prop).
% Definition mvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W))):((fofType->Prop)->Prop).
% Definition msatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W)))):((fofType->Prop)->Prop).
% Definition mcountersatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False)))):((fofType->Prop)->Prop).
% Definition minvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False))):((fofType->Prop)->Prop).
% Parameter rel_s4:(fofType->(fofType->Prop)).
% Definition mbox_s4:=(fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_s4 W) V)->False)) (Phi V)))):((fofType->Prop)->(fofType->Prop)).
% Definition mdia_s4:=(fun (Phi:(fofType->Prop))=> (mnot (mbox_s4 (mnot Phi)))):((fofType->Prop)->(fofType->Prop)).
% Axiom a1:(mreflexive rel_s4).
% Axiom a2:(mtransitive rel_s4).
% Axiom cumulative_ax:(forall (X:mu) (V:fofType) (W:fofType), (((and ((exists_in_world X) V)) ((rel_s4 V) W))->((exists_in_world X) W))).
% Parameter empty:(mu->(fofType->Prop)).
% Parameter in:(mu->(mu->(fofType->Prop))).
% Parameter empty_set:mu.
% Axiom existence_of_empty_set_ax:(forall (V:fofType), ((exists_in_world empty_set) V)).
% Parameter singleton:(mu->mu).
% Axiom existence_of_singleton_ax:(forall (V:fofType) (V1:mu), ((exists_in_world (singleton V1)) V)).
% Parameter set_difference:(mu->(mu->mu)).
% Axiom existence_of_set_difference_ax:(forall (V:fofType) (V2:mu) (V1:mu), ((exists_in_world ((set_difference V2) V1)) V)).
% Axiom reflexivity:(mvalid (mbox_s4 (mforall_ind (fun (X:mu)=> (mbox_s4 ((qmltpeq X) X)))))).
% Axiom symmetry:(mvalid (mbox_s4 (mforall_ind (fun (X:mu)=> (mbox_s4 (mforall_ind (fun (Y:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq X) Y))) (mbox_s4 ((qmltpeq Y) X))))))))))).
% Axiom transitivity:(mvalid (mbox_s4 (mforall_ind (fun (X:mu)=> (mbox_s4 (mforall_ind (fun (Y:mu)=> (mbox_s4 (mforall_ind (fun (Z:mu)=> (mbox_s4 ((mimplies ((mand (mbox_s4 ((qmltpeq X) Y))) (mbox_s4 ((qmltpeq Y) Z)))) (mbox_s4 ((qmltpeq X) Z)))))))))))))).
% Axiom set_difference_substitution_1:(mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 (mforall_ind (fun (C:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((qmltpeq ((set_difference A) C)) ((set_difference B) C))))))))))))))).
% Axiom set_difference_substitution_2:(mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 (mforall_ind (fun (C:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((qmltpeq ((set_difference C) A)) ((set_difference C) B))))))))))))))).
% Axiom singleton_substitution_1:(mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((qmltpeq (singleton A)) (singleton B)))))))))))).
% Axiom empty_substitution_1:(mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 ((mimplies ((mand (mbox_s4 ((qmltpeq A) B))) (mbox_s4 (empty A)))) (mbox_s4 (empty B))))))))))).
% Axiom in_substitution_1:(mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 (mforall_ind (fun (C:mu)=> (mbox_s4 ((mimplies ((mand (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((in A) C)))) (mbox_s4 ((in B) C)))))))))))))).
% Axiom in_substitution_2:(mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 (mforall_ind (fun (C:mu)=> (mbox_s4 ((mimplies ((mand (mbox_s4 ((qmltpeq A) B))) (mbox_s4 ((in C) A)))) (mbox_s4 ((in C) B)))))))))))))).
% Axiom antisymmetry_r2_hidden:(mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> (mbox_s4 ((mimplies (mbox_s4 ((in A) B))) (mbox_s4 (mnot (mbox_s4 ((in B) A))))))))))))).
% Axiom fc1_xboole_0:(mvalid (mbox_s4 (empty empty_set))).
% Axiom rc1_xboole_0:(mvalid (mexists_ind (fun (A:mu)=> (mbox_s4 (empty A))))).
% Axiom rc2_xboole_0:(mvalid (mexists_ind (fun (A:mu)=> (mbox_s4 (mnot (mbox_s4 (empty A))))))).
% Axiom l36_zfmisc_1:(mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> ((mand (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))) (mbox_s4 ((in A) B))))) (mbox_s4 ((mimplies (mbox_s4 ((in A) B))) (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set)))))))))))).
% Trying to prove (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> ((mand (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))) (mbox_s4 ((in A) B))))) (mbox_s4 ((mimplies (mbox_s4 ((in A) B))) (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))))))))))))
% Found l36_zfmisc_1:(mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> ((mand (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))) (mbox_s4 ((in A) B))))) (mbox_s4 ((mimplies (mbox_s4 ((in A) B))) (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))))))))))))
% Found l36_zfmisc_1 as proof of (mvalid (mbox_s4 (mforall_ind (fun (A:mu)=> (mbox_s4 (mforall_ind (fun (B:mu)=> ((mand (mbox_s4 ((mimplies (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))) (mbox_s4 ((in A) B))))) (mbox_s4 ((mimplies (mbox_s4 ((in A) B))) (mbox_s4 ((qmltpeq ((set_difference (singleton A)) B)) empty_set))))))))))))
% Got proof l36_zfmisc_1
% Time elapsed = 0.028286s
% node=0 cost=0.000000 depth=0
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% l36_zfmisc_1
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------